The role of the pseudoexfoliative syndrome as a transitional entity to glaucoma

Authors

  • Cesar Alberto Ortiz Orozco Hospital Civil de Guadalajara Dr Juan I Menchaca, Departamento de cirugía, Guadalajara, Jalisco, Mexico http://orcid.org/0000-0002-1741-4117
  • Felix Osuna Gutiérrez School of Medicine, Autonomous University of Guadalajara, Guadalajara, Jalisco, Mexico
  • José María Zepeda Torres School of Medicine, Autonomous University of Guadalajara, Guadalajara, Jalisco, Mexico
  • Carlos Navarro Fernandez Hospital Civil de Guadalajara Dr Juan I Menchaca, Departamento de cirugía, Guadalajara, Jalisco, Mexico
  • Adriana Baltazar Gomez Hospital Civil de Guadalajara Dr Juan I Menchaca, Departamento de cirugía, Guadalajara, Jalisco, Mexico
  • Sofia Vibiana Garcia Aguilar Hospital Civil de Guadalajara Dr Juan I Menchaca, Departamento de cirugía, Guadalajara, Jalisco, Mexico
  • Victor Manuel Elizarras Garcia Departamento de Urgencias, Hospital General de Zona 14, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico

DOI:

https://doi.org/10.18203/2349-2902.isj20221732

Keywords:

Glaucoma, Pathophysiology, Pseudoexfoliative

Abstract

The balance between the secretion of aqueous humor by the ciliary body and its drainage through 2 independent pathways, the trabecular meshwork and the uveoscleral outflow pathway; and this will determine the intraocular pressure, which is considered the determining factor for glaucoma. Glaucoma is an entity of great clinical importance, being the second cause of blindness worldwide. There are different explanations for the pathophysiology of the disease, as well as immunological and vascular factors that lead to an increase in intraocular pressure, causing all these factors to trigger the development of glaucoma. Pseudoexfoliation syndrome can be defined as a systemic pathology that is generated by the deposition of extracellular fibrillar material in different tissues, and which, depending on the affected person, can cause different subsequent entities. Glaucoma progression and its sequelae may be more related to higher intraocular pressures than to other mechanisms. Various studies relate oxidative stress to glaucomatous progression. As the composition of the material causing pseudoexfoliation is further studied, its influence on the eye can be better understood.  

References

Johnson M, McLaren JW, Overby DR. Unconventional aqueous humor outflow: A review. Exp Eye Res. 2017;158:94-111.

Costagliola C, dell’Omo R, Agnifili L, Bartollino S, Fea AM, Uva MG, et al. How many aqueous humor outflow pathways are there? Surv Ophthalmol. 2020;65(2):144-70.

Wang Q, Thau A, Levin AV, Lee D. Ocular hypotony: A comprehensive review. Surv Ophthalmol. 2019;64(5):619-38.

Sánchez MGJ, Del Pozo EC, Medina RJA, Naude J, Solorzano BA. Numerical simulation of the aqueous humor flow in the eye drainage system; a healthy and pathological condition comparison. Med Eng Phys. 2020;83:82-92.

Carreon TA, Edwards G, Wang H, Bhattacharya SK. Segmental outflow of aqueous humor in mouse and human. Exp Eye Res. 2017;158:59-66.

Carreon T, van der Merwe E, Fellman RL, Johnstone M, Bhattacharya SK. Aqueous outflow - A continuum from trabecular meshwork to episcleral veins. Prog Retin Eye Res. 2017;57:108-33.

Dvoriashyna M, Repetto R, Romano MR, Tweedy JH. Aqueous humour flow in the posterior chamber of the eye and its modifications due to pupillary block and iridotomy. Math Med Biol. 2018;35(4):447-67.

Acott TS, Vranka JA, Keller KE, Raghunathan V, Kelley MJ. Normal and glaucomatous outflow regulation. Prog Retin Eye Res. 2021;82(100897):100897.

Lusthaus J, Goldberg I. Current management of glaucoma. Med J Aust. 2019;210(4):180-7.

Geyer O, Levo Y. Glaucoma is an autoimmune disease. Autoimmun Rev. 2020;19(6):102535.

Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S. Glaucoma. Lancet. 2017;390(10108):2183-93.

Zukerman R, Harris A, Vercellin AV, Siesky B, Pasquale LR, Ciulla TA. Molecular genetics of glaucoma: Subtype and ethnicity considerations. Genes (Basel). 2020;12(1):55.

Aggarwala KRG. Ocular accommodation, intraocular pressure, development of myopia and glaucoma: Role of ciliary muscle, choroid and metabolism. Med Hypothesis Discov Innov Ophthalmol. 2020;9(1):66-70.

News.un.org. Available at: https://news.un.org/es/story/2009/03/1158791. Accessed on 8 November 2021.

Who.int. Available at: https://www.who.int/es/news-room/fact-sheets/detail/blindness-and-visual-impairmentdel. Accessed on 8 November 2021.

Guo T, Guo L, Fan Y, Fang L, Wei J, Tan Y, et al. Aqueous humor levels of TGFβ2 and SFRP1 in different types of glaucoma. BMC Ophthalmol. 2019;19(1):170.

Sun X, Dai Y, Chen Y, Yu D-Y, Cringle SJ, Chen J, et al. Primary angle closure glaucoma: What we know and what we don’t know. Prog Retin Eye Res. 2017;57:26-45.

Org.co. Available at: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-00112017000500059&lang=pt. Accessed on 8 November 2021.

Liu S-A, Zhao Z-N, Sun N-N, Han Y, Chen J, Fan Z-G. Transitions of the understanding and definition of primary glaucoma. Chin Med J (Engl). 2018;131(23):2852-9.

Tanner L, Gazzard G, Nolan WP, Foster PJ. Has the EAGLE landed for the use of clear lens extraction in angle-closure glaucoma? And how should primary angle-closure suspects be treated? EYE. 2020;34(1):40-50.

Palko JR, Qi O, Sheybani A. Corneal alterations associated with pseudoexfoliation syndrome and glaucoma: A literature review. J Ophthalmic Vis Res. 2017;12(3):312-24.

McMonnies CW. Glaucoma history and risk factors. J Optom. 2017;10(2):71-8.

Turgut Coban D, Cakir T, Erol MK, Dogan G, Dogan B, Bilgilisoy Filiz M, et al. Electroneuromyographic findings in pseudoexfoliation syndrome. Int Ophthalmol. 2018;38(2):705-12.

Sakurada Y, Mabuchi F. Genetic risk factors for glaucoma and exfoliation syndrome identified by genome-wide association studies. Curr Neuropharmacol. 2018;16(7):933-41.

Aviv U, Ben Ner D, Sharif N, Gur Z, Achiron A. Pseudoexfoliation: An ocular finding with possible systemic implications. Isr Med Assoc J. 2017;19(1):49-54.

Shumway C, Curtin K, Taylor S, Sundar KM, Wirostko BM, Ritch R. Association between obstructive sleep apnea and exfoliation syndrome: The Utah project on exfoliation syndrome. Ophthalmol Glaucoma. 2021;4(3):260-7.

Evangelho K, Mogilevskaya M, Losada-Barragan M, Vargas-Sanchez JK. Pathophysiology of primary open-angle glaucoma from a neuroinflammatory and neurotoxicity perspective: a review of the literature. Int Ophthalmol. 2019;39(1):259-71.

Flammer J, Orgül S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21(4):359-93.

Murphy ML, Pokrovskaya O, Galligan M, O’Brien C. Corneal hysteresis in patients with glaucoma-like optic discs, ocular hypertension and glaucoma. BMC Ophthalmol. 2017;17(1):1.

Flammer J, Haefliger IO, Orgül S, Resink T. Vascular dysregulation: a principal risk factor for glaucomatous damage? J Glaucoma. 1999;8(3):212-9.

Çınar E, Yüce B, Aslan F. Retinal and choroidal vascular changes in eyes with Pseudoexfoliation syndrome: A comparative study using optical coherence tomography angiography. Balkan Med J. 2019;37(1):9-14.

Aydın Yaz Y, Yıldırım N, Yaz Y, Tekin N, İnal M, Şahin FM. Role of oxidative stress in pseudoexfoliation syndrome and pseudoexfoliation glaucoma. Turk J Ophthalmol. 2019;49(2):61-7.

Terracciano L, Cennamo M, Favuzza E, Julia L, Caporossi O, Mencucci R. An in vivo confocal microscopy study of corneal changes in pseudoexfoliation syndrome. Eur J Ophthalmol. 2019;29(5):555-60.

Kan E, Yılmaz A, Demirağ MD, Çalık M. Is pseudoexfoliation syndrome a risk factor for cerebro vascular disease? Semin Ophthalmol. 2017;32(2):153-6.

Montero MÁP, Amézquita MGX. Glaucoma agudo por cierre angular: manejo de urgencias por el optómetra. Cienc tecnol para salud vis ocul. 2014;12(1):107.

Quigley HA, Sanchez RM, Dunkelberger GR, L’Hernault NL, Baginski TA. Chronic glaucoma selectively damages large optic nerve fibers. Invest Ophthalmol Vis Sci. 1987;28(6):913-20.

Desai MA, Lee RK. The medical and surgical management of pseudoexfoliation glaucoma. Int Ophthalmol Clin. 2008;48(4):95-113.

Tarkkanen A. Pseudoexfoliation of the lens capsule. A clinical study of 418 patients with special reference to glaucoma, cataract, and changes of the vitreous. Acta Ophthalmol Suppl. 1962;71:1-98.

Wishart PK, Spaeth GL, Poryzees EM. Anterior chamber angle in the exfoliation syndrome. Br J Ophthalmol. 1985;69(2):103-7.

Franks WA, Miller MH, Hitchings RA, Jeffrey MN. Secondary angle closure in association with pseudoexfoliation of the lens capsule. Acta Ophthalmol (Copenh). 1990;68(3):350-2.

Ritch R. Exfoliation syndrome and occludable angles. Trans Am Ophthalmol Soc. 1994;92:845-944.

Aao.org. Available at: https://eyewiki.aao.org/Pseudoexfoliative_Glaucoma. Accessed on 8 November 2021.

Ringvold A. A preliminary report on the amino acid composition of the pseudo-exfoliation material (PE material). Exp Eye Res. 1973;15(1):37-42.

Yousuf S. Ocular profile of patients with pseudoexfoliation syndrome and pseudoexfoliation glaucoma. J med sci clin res. 2018;6(11).

Schlötzer-Schrehardt UM, Dörfler S, Naumann GO. Corneal endothelial involvement in pseudoexfoliation syndrome. Arch Ophthalmol (Chicago, Ill 1960). 1993;111(5):666-74.

Naumann GO, Schlötzer-Schrehardt U. Keratopathy in pseudoexfoliation syndrome as a cause of corneal endothelial decompensation: A clinicopathologic study. Ophthalmology. 2000;107(6):1111-24.

Schlötzer-Schrehardt U. Genetics and genomics of pseudoexfoliation syndrome/glaucoma. Middle East Afr J Ophthalmol. 2011;18(1):30-6.

Izzotti A, Bagnis A, Sacca S. The role of oxidative stress in glaucoma. Mutat Res Mutat Res. 2006;612(2):105-14.

Tezel G. Oxidative stress in glaucomatous neurodegeneration: Mechanisms and consequences. Prog Retin Eye Res. 2006;25(5):490-513.

Mumcu UY, Kocer I, Ates O, Alp HH. Decreased paraoxonase1 activity and increased malondialdehyde and oxidative DNA damage levels in primary open angle glaucoma. Int J Ophthalmol. 2016;9(10):1518-20.

Downloads

Published

2022-06-27

Issue

Section

Review Articles